#### **Challenges and Applications**

Alexandru Sorici







## **Robotics (the usual thought)**



#### Photo Credit: Disruption Hub





**Da Vinci Surgical Robot** Photo Credit: Jewish General Hospital



Amazon Warehouse Robots

Platforms

Photo Credit: gifs.com



First Tech Challenge Robot Competition Photo Credit: EditiaDeDimineata.ro

Photo Credit: Boston Dynamics

SpotMini

## **Robotics (the usual thought)**

**ISO definition**: "reprogrammable, multifunctional manipulator designed to move material, parts, tools or specialized devices through variable programmed motions for performance of a variety of tasks."

Wikipedia definition: "A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics."

#### **Assistive Robotics - an umbrella term**

Defining characteristics of *assistive robots*:

- Work alongside / in assistance of humans => direct interaction with humans
- Can perceive their environment and **other individuals** using sensors and intelligent algorithms
- Can **communicate with people** multimodally
- Can have a degree of autonomy for navigation, decision making
- Have a strong focus on **safety of the interaction**

#### **Assistive Robotics - when viewed as collaboration**

#### **COBOTS (collaborative robots)**

**Wikipedia definition:** "A cobot, or collaborative robot, is a robot intended for direct human robot interaction within a shared space, or where humans and robots are in close proximity. Cobot applications contrast with traditional industrial robot applications in which robots are isolated from human contact."

#### **Assistive Robotics - when viewed as** *collaboration*



Kuka Robotic Arm Photo Credit: RobotWorx - Collaborative robot safety



Baxter Robot Photo Credit: NS Medical Devices

#### **Assistive Robotics - the more common understanding**

• An **assistive robot** performs a **physical task** for the **well-being** of a **senior person / person with disabilities.** The **task** is usually in the context of **Activities of Daily Living**.

• The **person** is in control of the robot (=> no autonomy)

#### **Assistive Robotics - the more common understanding**



HAL (Hybrid Assistive Limb) by Cyberdyne Photo Credit: roboticsfinder.com



JACO Assistive Robot Arm by Kinova Robotics Photo Credit: kinovarobotics.com



Sophia by Hanson Robotics Photo Credit: hansonrobotics.com



Sophia by Hanson Robotics Photo Credit: hansonrobotics.com



Paro by Paro Robotics Photo Credit: parorobot.com



Sophia by Hanson Robotics Photo Credit: hansonrobotics.com



Paro by Paro Robotics Photo Credit: parorobot.com



Pepper by Softbank Photo Credit: softbankrobotics.com Nao by Softbank Photo Credit: softbankrobotics.com



Sophia by Hanson Robotics Photo Credit: hansonrobotics.com



Paro by Paro Robotics Photo Credit: parorobot.com



Amazon Echo



**Digital Assistants** (robots require embodiment)



Pepper by Softbank Photo Credit: softbankrobotics.com Nao by Softbank Photo Credit: softbankrobotics.com

## **Social Robotics - Domains of Activity**

#### • Healthcare and Active and Assisted Living

- Assist aging or disabled individuals who are in need of *supervision* (but not active care)
  - This includes companion robots with manipulation capabilities, but is mostly focused on communication capabilities and facilitation of tele interactions
- Emotional assistance
  - Mostly "pet" robots → based on pet-therapy in hospitals or care facilities
- Therapy for people with Autism Spectrum Disorder
  - Robots have non-humanoid, humanoid (e.g. Nao) or animal-like form
  - Robots help in addressing and practicing social behaviors (e.g. eye contact, touch, liking), language development, stereotyped behaviors
- Why use robots in Healthcare and Assisted Living?
  - Many elderly users live alone
  - Time constraints for quality care on both formal and informal caregivers
  - Cost-savings (given the lack of sufficient care workers and growing aging population)

## **Social Robotics - Domains of Activity**

#### • Education

- Focused mostly on tutoring and teaching for children (age groups 3-12)
- Research focuses on both *cognitive (e.g. learning gains, improved test completion times)* and *affective* learning outcomes (e.g. improving attention, fatigue measurement, engagement measurement, anxiety reduction)
- Examples:
  - learning a game (e.g. chess)
  - learning a foreign language (e.g. english for japanese students including *robot as novice* setup)
  - tutoring during puzzle games
  - Handwriting improvement (*teachable robot*)
- Why use robots in Education?
  - High availability + easy to provide fact-based knowledge
  - Increased acceptance by young users



T. Belpaeme et al. "Social robots for education: A review." *Science robotics* 3, no. 21 (2018)

 Studies begin showing positive effects when compared to just computer-based tutors (effect of "embodiment")

## **Social Robotics - Domains of Activity**

#### • Public Assistance and Entertainment

- Social Robots as "public info points", "waiters" and "performers" at various events and public interest institutions / venues (hotels, business centers, banks, restaurants)
- Includes entertainment in social care scenarios (e.g. games / quizzes for the elderly)

- Why use robots in Entertainment?
  - High availability
  - Novelty factor







### **Social Robotics - how researchers define it**

"Social robots are *physically embodied agents* that have *some (or full) autonomy* and engage in *social interactions with humans*, by *communicating*, *cooperating*, and *making decisions*. These *behaviours* are then *interpreted* by human onlookers as *'social'*, according to current norms and conventions." [1]

### **Social Robotics - what users expect of it**

Being accepted as a **social entity** in a user home requires [2]:

- 1. **Two-way interaction** (robot has to respond to a human in a *human manner*)
- 2. Display thoughts and feelings
- 3. Be **socially aware** of their environment
- 4. Provide **social support** (be *there* for a person, like a friend)
- 5. Demonstrate **autonomy**

### **Social Robotics - some distilled requirements**

- Embodied *agents* that are part of a *heterogenous group: humans and robots*
- Robots must perceive and interpret the world, creating their own history
- Engage in **social interactions / communicate** with humans (and other robots) following **behavioral norms**
- **Emotion modeling** (through speech, facial expressions, body language)

## **Social Robotics - Social Challenges :-)**

- Researchers focus on *general* (navigation, people and environment perception) and *communication capabilities* (multimodal human-robot interaction)
- Users **expect** to **relate** to a social robot as they would to a **human friend** 
  - The current limited social capabilities of a social robots lead humans to view them as **household servants** (rather than companions)
  - Users quickly lose interest if their **"social capabilities"** (e.g. reciprocal conversation) expectations are unmet
- Current research is **still** mostly focused on the technical challenges (**it still has to be**). The *social sciences* (psychology, user studies, behavioral science) are not yet in focus.

#### **Social Robotics - Social Challenges :-)**



#### The Uncanny Valley effect Photo Credit: Wikipedia

## **Social Robotics - Technical Challenges**

- Human-oriented perception:
  - People tracking, face detection/recognition, gesture recognition, action recognition, facial expression classification
- Environment perception:
  - Navigation/Exploration, object detection/recognition, lifelong SLAM
- Interaction/Planning:
  - Realistic Dialogue Management, People Modeling, Lifelong Behavior Management

# Social Robotics @ AI-MAS

Our Experience with the Pepper Robot

## **Active and Assisted Living**

ons medical 0 companic companic doctor 2 helpe gnit ome health healthcare facility adult so mature of aging age age of care nelpful staff nurse z caring tender costs live home AAL









**CAMI Ecosystem** 

- Integrated solution to support elderly needs
- Functionalities:
  - Health data monitoring and sharing
  - Home monitoring
  - Supervised Physical Exercises
  - Intelligent Reminders and Planning
  - Multimodal Interactions







#### **CAMI Multi-Modal Interface**

- Set user preferences
- Status of the user (medical condition + reminders)
- Environment condition
- System Config



#### **Our Work with the Pepper Robot: the AMIRO framework**

#### **Our Work with the Pepper Robot: the AMIRO framework**



S. Ghiță et al. "The AMIRO Social Robotics Framework: Deployment and Evaluation on the Pepper Robot." Sensors 20, no. 24 (2020)



#### Localization / Map construction

 Requires use of an external 2D LiDAR (360° RP1 Lidar) + Raspberry PI3 board for LiDAR data acquisition



#### Localization / Map construction

- Requires use of an external 2D LiDAR (360° RP1 Lidar) + Raspberry PI3 board for LiDAR data acquisition
- Hector SLAM [3] for environment mapping
- **Fine-tuned** *amcl* ROS module [4] for localization (fine tuning looks at the physical / geometrical constraints of the robot - e.g. maximum translation and turn speed, move base footprint, safety margins)

[3] <u>http://wiki.ros.org/hector\_slam</u>
[4] <u>http://wiki.ros.org/amcl</u>



#### Localization / Map construction

- Requires use of an external 2D LiDAR (360° RP1 Lidar) + Raspberry PI3 board for LiDAR data acquisition
- Hector SLAM [3] for environment mapping
- **Fine-tuned** *amcl* ROS module [4] for localization
- External LiDAR required for large scale SLAM-based mapping (e.g. lab + floor) range sensors of Pepper robot have too limited a range

[3] <u>http://wiki.ros.org/hector\_slam</u>
[4] <u>http://wiki.ros.org/amcl</u>





#### Navigation using existing map

- Uses the *move\_base* ROS module, using DWA local planner and A\* global planner
- Pepper robot has large orientation errors on rotation (10° on every 360° turn) + drift on translation (1° on every meter forward) => external LiDAR still required for correct localization
- Global Planner configured to plan for 5m movements at a time: e.g. navigation from lab to hallway for 18.2m takes 58.11s to execute

#### **Environment Perception in AMIRO: Object Detection**



- Use of YOLOv3 [5] model for object detection
- Tracking of objects (including identified people) using the SORT [6] algorithm
- Use of an object segmentation algorithm
  [7] to *align* object pixels with robot
  depth-map => can estimate **distance to**objects

#### **Human-Centered Perception in AMIRO**

#### **Human-Centered Perception in AMIRO**





- **Person** *Detection* using YOLOv3 [5]
- Tracking of people using the SORT [6] algorithm
- **Person** *Recognition* using FaceNet [8]
- Pose Recognition using Openpose [9]

[5] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." (2018).

[6] A. Bewley et al., "Simple online and realtime tracking," ICIP 2016

[8] F. Schroff et al.,, "Facenet: A unified embedding for face recognition and clustering", CoRR, 2015

[9] Z. Cao et al. "Realtime multi-person 2d pose estimation using part affinity fields.", ICCV, 2017.

#### Human-Centered Perception: People Localization



a). Map of the environment

b). Detections in RGB image.



 AMIRO Framework combines information from Person Identification, Depth Mapping + amcl Localization services to save *last seen* position of recognized people on the map

c). Detected people placed on the map.
## Human-Centered Perception in AMIRO - Vision Pipeline



• Entire processing pipeline (object det. + people det. + people/object tracking + people rec. + pose estimation) yields a 3 fps throughput

#### **Human-Centered Perception: Action Recognition**



• The Action Recognition module allows recognizing common human ADL actions such as: walking, standing, sitting, drinking, typing, pointing etc.

## **Human-Centered Perception: Action Recognition**

Loss 3

| 府 <u></u>                                                                                    | 穷<br>疗                                   | 府 <u> </u>                             | ê                                         |
|----------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------|
| Linear (128)<br>Linear (128)<br>Linear (128)<br>Linear (128)<br>Linear (128)<br>Linear (128) | Linear (128)<br>LessiyReLU<br>LessiyReLU | Linear (128)                           | Linear (128)                              |
| Linear (128)<br>Linear (128)<br>Linear (128)<br>Linear (128)<br>Linear (128)                 | Linear (128) Linear (128)                | Linear (128)                           | Linear (128)                              |
| Enclaiment                                                                                   |                                          | Linear/RecU                            | Linear (256)                              |
| Batchendu<br>Laaperuu<br>Linear (256)<br>Batchendu<br>Laaperu                                |                                          | LSTM (256)<br>LSTM (256)               | LSTM (256)<br>LSTM (256)                  |
| LSTM (256)<br>LSTM (256)<br>LSTM (256)                                                       |                                          | LSTM (256)                             | LSTM (256)                                |
| Bunkhamdd<br>Lewypeu<br>Linear (256)                                                         |                                          | BadoMondd<br>LadyfficU<br>Linear (256) | Linear (512)<br>Batchlorm2d<br>LaskyNetLU |
| Prod<br>Action 1                                                                             |                                          | LeastyfieLU<br>Linear (256)            | Linear (256)                              |
|                                                                                              |                                          | Pred<br>Action 2<br>Loss 2             | Linear (256)<br>I<br>Pred<br>Action 3     |

- The Action Recognition module allows recognizing common human ADL actions such as: walking, standing, sitting, drinking, typing, pointing etc.
- Module uses an in-house action recognition model based on human *"skeleton"* data (model pre-trained on NTU RGB+D dataset [9]

# Interaction / Planning in AMIRO: Dialogue Management

NLU Input (user's command ASR result): Display my blood pressure.

NLU Output (partial):

```
"intent": "get_health",
   "entities":
   {
        "health_entity": "blood pressure",
        " output_entity ": "display"
   }
....
```

## Story 1 (story name)

\* greet (recognized intent)

- utter\_greet (system answer/action)

\* get\_health (recognized intent)

- utter\_health (system answer/action)

\* goodbye (recognized intent)

- utter\_goodbye (system answer/action)



- Dialogue Management in AMIRO uses services for each step in a conversation:
  - Local processing to **detect utterance** (active listening on microphone)
  - Google Cloud Speech Recognition API [10] for **Speech-to-Text** (works for English and Romanian)
  - Wit.ai [11] to perform Natural Language Understanding (NLU) → recognize speaker intent
  - RASA [12] for **conversation** management

[10] <u>https://cloud.google.com/speech-to-text</u>
[11] <u>https://wit.ai/</u>
[12] <u>https://rasa.com/</u>

## Interaction / Planning in AMIRO: Behavior Management



- Behavior Management is implemented using a priority-queue based task manager (works like a preemptable state machine)
  - Tasks have *success* and *failure* continuations
  - Tasks can be paused (when a higher priority task is inserted into the queue)

## **AMIRO** in Action

#### **AMIRO** in Action: Find a Person + Recognize Action



#### **AMIRO in Action: Notification Reminders**



#### **AMIRO** in Action: Putting it all together



## **AMIRO on Pepper: the challenges behind the scenes**

- Vision Modules (people detection, action recognition) **highly** dependent on lighting conditions and camera position
- Noisy robot microphone; it's a challenge to have a group of people interact with the robot
- Continual life cycle still an ongoing challenge
  - AMIRO allows chaining together interaction episodes, but a "global" robot behavior is still missing
- Robot navigation requires "special" arrangements (sufficient distance from obstacles more than 30cm, wide open doors etc.)
- Network Bandwidth was an unexpected bottleneck :-)

# AMIRO: going forward - it's still technical

- Train vision and action recognition models on a much wider set of use cases and environment conditions
- Work on implementing *single user* vs *group* interaction modes
- Augment robot navigation with lifelong SLAM and *semantic mapping*
- Extend the behavior management module to have a *default proactive* state
- More research into local vs edge vs cloud module deployments to increase re

# **Social Robotics**

The Summary

# **Social Robotics: The Summary**

- Social Robotics Research is most active in Healthcare/Assistance, Education and Entertainment
- Social Robotics Research is *still* dealing with the technical challenges and awaits a look into the *social* aspects
  - Social robotics requires believable capabilities of navigation, communication, environment perception, long-lived interaction to be accepted by humans
  - Currently limited to individual scenarios that can be handled well (e.g. in retail, healthcare, education)
- The large amount of required ML/AI models that need to be integrated give rise to new deployment models such as Cloud Robotics



alexandru.sorici@upb.ro AI-MAS Lab