Robot Autonomy

Dealing with Unknown Environments

Dan M. Novischi

dan_marius.novischi@upb.ro

University POLITEHNICA of Bucharest Faculty of Automatic Control And Computers

UNKNOWN ENVIRONMENT

• What is a robot environment?

UNKNOWN ENVIRONMENT

• What is a robot environment?

• What do we mean by unknown environment?

UNKNOWN ENVIRONMENT

• What is a robot environment?

• What do we mean by unknown environment?

· Are unknown environments structured or unstructured?

WHAT IS ROBOT MAPPING?

 Robot – moves through the environment collecting observations

WHAT IS ROBOT MAPPING?

- Robot moves through the environment collecting observations
- Sensors LiDARs, RGB-D Cameras

WHAT IS ROBOT MAPPING?

- Robot moves through the environment collecting observations
- Sensors LiDARs, RGB-D Cameras

• Observations – Laser Scans, RGB and Depth Images, Point Clouds

- Robot moves through the environment collecting observations
- Sensors LiDARs, RGB-D Cameras
- Observations Laser Scans, RGB and Depth Images, Point Clouds
- Mapping using the collected data to model the environment

RELATED TERMS

State Estimation	Localization
Mapping	SLAM
Navigation	Motion Planning

• Computing the robot state (i.e. its pose) and the environment map at the same time

- Localization: estimate the robot state (i.e. its location)
- Mapping: building the map
- **SLAM:** building the map and localizing the robot simultaneously

LOCALIZATION EXAMPLE

• Estimate robot's poses given landmarks

MAPPING EXAMPLE

• Estimate landmarks given robot the robot poses

Images taken from Robot Mapping Course [2] by Cyrill Stachniss

SLAM EXAMPLE

• Estimate robot's poses and the landmarks at the same time

Chicken-or-egg problem:

- a map is needed for localization
- a pose estimate is needed for mapping

Images taken from Robot Mapping Course [2] by Cyrill Stachniss

THE SLAM PROBLEM

- It's a fundamental problem for truly autonomous robots
- Basis for most navigation systems

Images taken from Robot Mapping Course [2] by Cyrill Stachniss

• SLAM is central to a range of indoor, outdoor, air, underwater and space applications for both manned and autonomous vehicles

Examples:

- At home: vacum cleaner, lawn mower
- Air: surveillance with unmanned vechiles
- · Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization

SLAM APPLICATIONS

SLAM APPLICATIONS

SLAM PROBLEM DEFINITION

Given

• The robot controls (i.e. commands):

 $u_{0:T}=\{u_0,u_1,u_2,\ldots,u_T\}$

• Observations:

$$z_{0:T} = \{z_0, z_1, x_2, \dots, z_T\}$$

Wanted

- Map of the environment: *m*
- Path of the robot:

 $x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$

SLAM PROBABILISTIC APPROACH

- Uncertainty is present in both robot motion and observation
- Use probability theory to explicitly represent uncertainty

Estimate the robot's path and the map

FULL SLAM GRAPHICAL MODEL

 $p(x_{0:T}, m \mid z_{1:T}, u_{1:T})$

Full vs. Online SLAM

• Full SLAM estimates the entire path

 $p(x_{0:T}, m \mid z_{1:T}, u_{1:T})$

• Online SLAM seeks to recover only the most recent pose

 $p(x_t, m \mid z_{1:t}, u_{1:t})$

OLINE SLAM GRAPHICAL MODEL

 $p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1})$

WHY IS SLAM A HARD PROBLEM?

Robot path and map are both unknown

• Map and pose estimates are correlated

WHY IS SLAM A HARD PROBLEM?

- The correspondence between the observations and the map is unknown
- Selecting wrong data associations leads to catastrophic divergence

- Kalman Filters
- Particle Filters
- Graph-based (Smoothing)

MOTION & OBSERVATION MODEL

MOTION MODEL

· Describes the relative motion of the robot

MOTION MODEL EXAMPLES

• Gaussian model

• Non-Gaussian model

OBSERVATION MODEL

- Relates measurements with the robot's pose
- It is also called the sensor model

OBSERVATION MODEL EXAMPLES

• Gaussian model

• Non-Gaussian model

- Mapping is the task of modeling the environment
- Localization means estimating the robot pose
- SLAM stands for Simultaneous localization and mapping
- Full SLAM vs. Online SLAM
- Explicitly model uncertainty in both motion and observations
- More Information in Literature: [1, 3, 2]

REFERENCES I

B. Siciliano, O. Khatib, and T. Kröger.
Springer handbook of robotics, volume 200.
Springer, 2008.

🔋 C. Stachniss.

Robot mapping course.

"http://ais.informatik.unifreiburg.de/teaching/ws13/mapping/, (accessed: 18.03.2022)".

REFERENCES II

S. Thrun. **Probabilistic robotics.**

Communications of the ACM, 45(3):52–57, 2002.