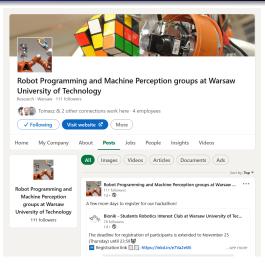
From service to assistive robotics with EARL based system engineering

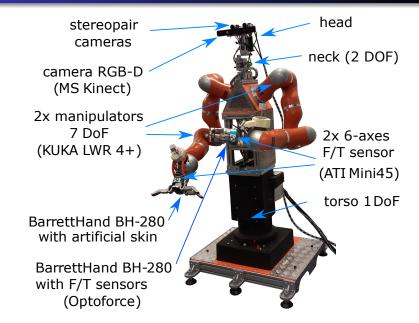
Tomasz Winiarski et all.

Warsaw University of Technology, Institute of Control and Computation Engineering

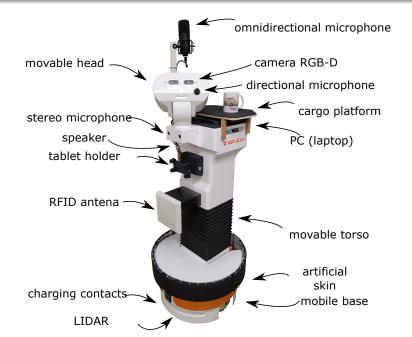
FIT Europe Bucharest seminar, 24 March 2022

- 2 EARL MODEL
- **3** EARL APPLICATIONS
- 4 Conclusions


Robot Programming and Machine Perception group – www page [6]


[6] Robot Programming and Machine Perception group - www page. URL: https://www.robotyka.ia.pw.edu.pl/.

Robot Programming and Machine Perception group – LinkedIN [5]



[5] Robot Programming and Machine Perception group - LinkedIn. URL: https://www.linkedin.com/company/robot-programming-and-machine-perceptionsgroups-warsaw-university-of-technology/.

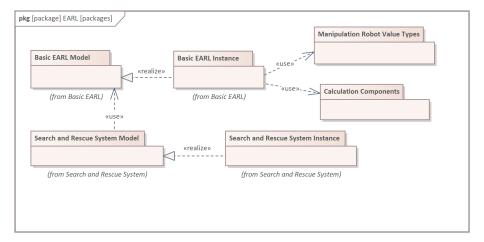
Velma service robot

Rico (modified TIAGo) assistive robot

1 RPMPG SCIENTIFIC TEAM

2 EARL MODEL

3 EARL APPLICATIONS

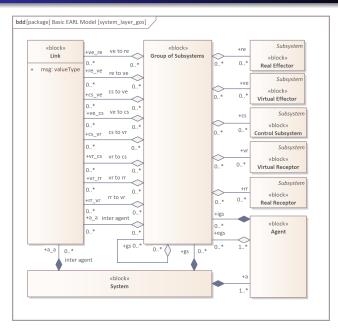

4 Conclusions

EARL idea

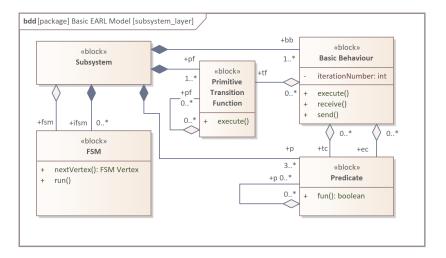
EARL [1, 10] – Embodied Agent-Based Robot Control Systems Modelling Language based on:

- SysML [4],
- Embodied Agent Theory of Warsaw school of prof. Cezary Zieliński [3].
- EARL Embodied Agent-Based Robot Control Systems Modelling Language reference manual. Mar. 2022. URL: https://www.robotyka.ia.pw.edu.pl/projects/earl/.
- T. Kornuta, C. Zieliński, and T. Winiarski. "A universal architectural pattern and specification method for robot control system design". In: Bulletin of the Polish Academy of Sciences: Technical Sciences 68.1 (2020), pages 3-29. DOI: 10.24425/bpasts.2020.131827. URL: http://journals.pan.pl/Content/115154/PDF/01_03-29_01163_Bpast.No.68-1_28.02.20_K_0K_TeX.pdf.
- [4] OMG Systems Modeling Language Version 1.6. accessed on 4 April 2020. Open Management Group. Dec. 2019. URL: https://www.omg.org/spec/SysML/1.6/.
- [10] T. Winiarski et al. "EARL Embodied Agent-Based Robot Control Systems Modelling Language". In: *Electronics* 9.2 (2020), page 379. DOI: 10.3390/electronics9020379. URL: https://www.mdpi.com/2079-9292/9/2/379.

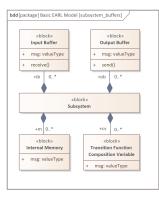
EARL a SysML packages

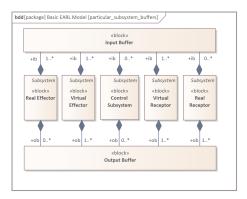

System layer

bdd [package] Basic EARL Model [system_layer_goa] +a_a inter agent «block» «block» Link 0..* 0..* Group of Agents «block» «enumeration» +a_a inter agent msg: valueType System +ga AgentType + 0..* 0..* с СТ CE +a 1..* 0..* CR +cs_vr cs to vr +ga 0..* 0..* «block» +a CET Agent CRT 0..* 0..* CER +re_ve re to ve + type: AgentType CERT ≥ 0..* +ve_cs ve to cs +re «block» «block» 0..* **Real Effector** Subsystem 0..* +rr_vr rr to vr +ve «block» Virtual Effector 0..* +ve_re ve to re «block» +cs_ve cs to ve **Control Subsystem** 0..* +vr «block» +vr_cs vr to cs Virtual Receptor 0..* 0..* +rr +vr_rr «block» vr to rr **Real Receptor** 0..* 0..*

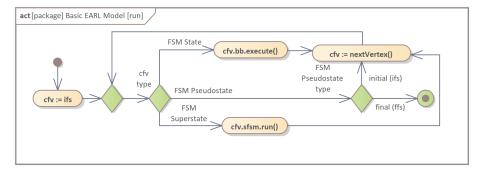

It is not trivial in SysML to add constraints like the following in the mathematical notations. EARL comprises it.

$$|vr| \ge 1 \iff |rr| \ge 1, |ve| \ge 1 \iff |re| \ge 1.$$
 (1)

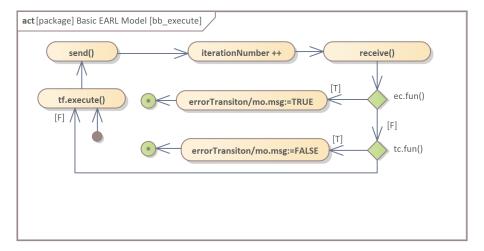

Groups of Subsystems

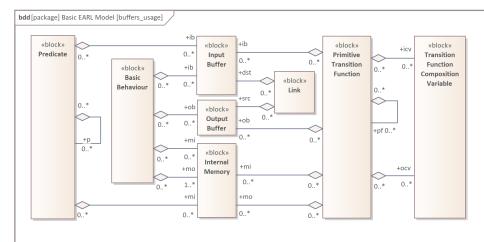


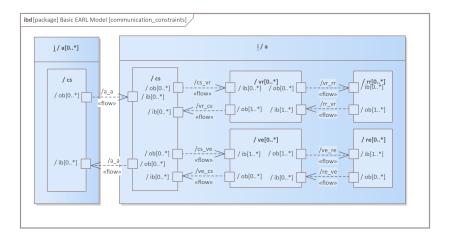
Subsystem layer



Buffers and Subsystems




Subsystem – operation FSM.run()


Subsystem – operation Basic Behaviour.execute()

Subsystem – Buffers, Predicates, Primitive Transition Functions

Model – communication constraints

The same Block can be presented in various context: In Subsystem:

```
manip/a.cs.jointMotion/bb
```

In FSM state: *fsm.firstMotion/s*:

manip/a.cs.fsm.firstMotion/s.jointMotion/bb (3)

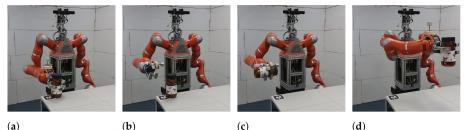
If only one element exists, there is no need to specify particular name:

manip/a.cs.fsm.firstMotion/s.bb (4)

If there are many elements, the lack of name denotes all of the elements - the whole set:

$$manip/a.cs.bb$$
 (5)

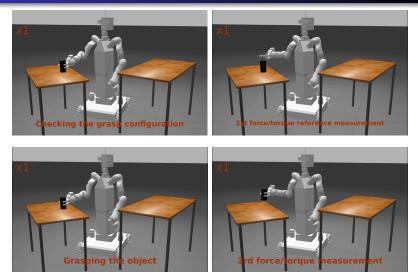
(2)


1 RPMPG SCIENTIFIC TEAM

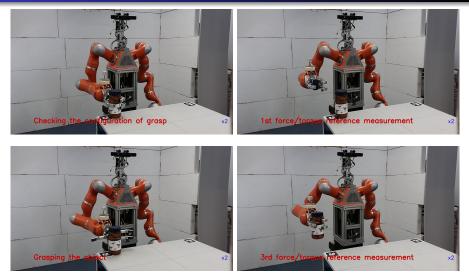
2 EARL MODEL

3 EARL APPLICATIONS

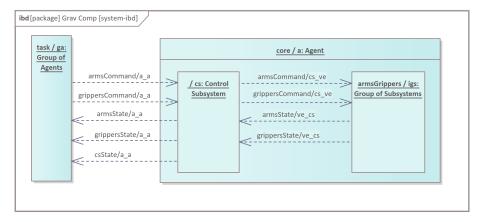
4 Conclusions


Gravity compensation in impedance robot control [8] robot Velma in experiments

(a) (c)


[8] T. Winiarski, S. Jarocki, and D. Seredyński. "Grasped Object Weight Compensation in Reference to Impedance Controlled Robots". In: Energies 14.20 (2021), page 6693. ISSN: 1996-1073, DOI: 10.3390/en14206693, URL: https://www.mdpi.com/1996-1073/14/20/6693.

Gravity compensation in impedance robot control – simulation


- ownCloud/rpmpg_movies/team/velma/Grasped object weight compensation in simulation.mp4
- https://vimeo.com/397214388

Gravity compensation in impedance robot control – experiments with hardware

- ownCloud/rpmpg_movies/team/velma/Grasped object weight compensation with hardware.mp4
- https://vimeo.com/618941465

Gravity compensation in impedance robot control – controller structure

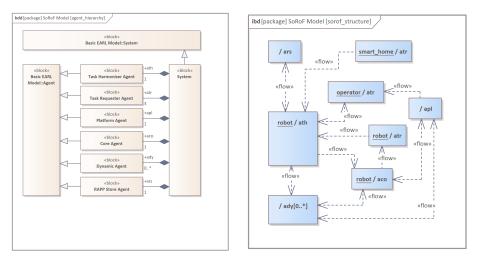
Full (self-descriptive) notation of Agents names that bases on instances.

Rico – mobile assistive robot – execution of user commands [9] – the robot

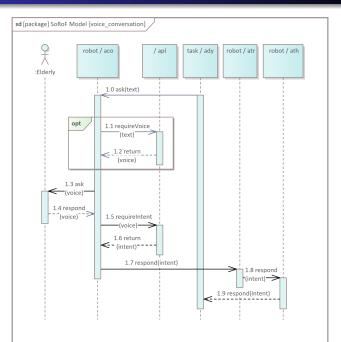
 T. Winiarski et al. "An intent-based approach for creating assistive robots' control systems". In: arXiv preprint arXiv:2005.12106 (2020). URL: http://arxiv.org/abs/2005.12106.

Rico – transportation attendance with hazard detection [7]

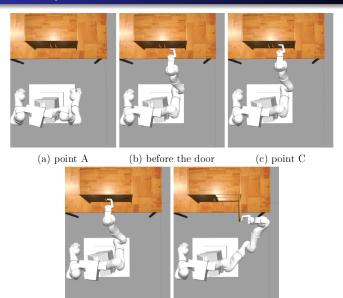
ownCloud/rpmpg_movies/team/rico/20220120_uwiniara/rico-tea-home.m4v


https://vimeo.com/670252925

Rico – reaction to a human fall [7]


- ownCloud/rpmpg_movies/team/rico/20220120_uwiniara/rico-human-fall-home.m4v
- https://vimeo.com/670246589

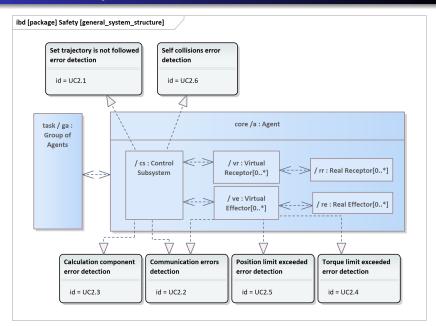
Rico – controller structure



Short notation of Agents' names that bases on parts.

Rico – controller behaviour

Velma – safety assurance

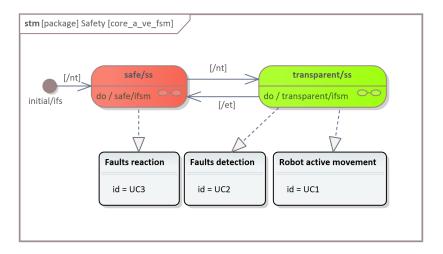


(d) point D

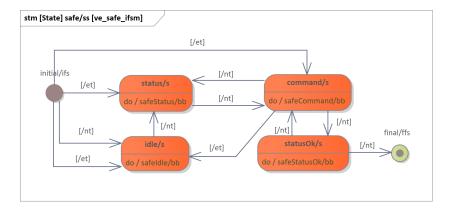
(e) point E

Publication in progress

Velma – safety assurance – controller structure



Velma – safety assurance – experiments [6]



- ownCloud/rpmpg_movies/team/velma/velma_safe_door_hq.mp4
- https://vimeo.com/266285125

Velma – safety assurance – hierarchical FSM of controller (1/2)

Velma – safety assurance – hierarchical FSM of controller (2/2)

1 RPMPG SCIENTIFIC TEAM

- 2 EARL MODEL
- **3** EARL APPLICATIONS

- EARL has answered some issues stated within discussion on INCOSE 31st Annual International Symposium 2021 – Panel: The Journey from SysML 1.7 to 2.0 [2]:
 - the paradigm of using SysML to model robot controllers and cyber-physical systems,
 - 2 the way to connect structural and behavioural diagrams,
 - **③** text and graphic notations correlation.
- [2] INCOSE 31st Annual International Symposium 2021. URL: https://www.incose.org/symp2021/home.