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Deductive Logic and Induction

 Deductive rule: If “all F are G” then “the next F will be G”
* Reliable: It never leads from true premises to a false conclusion.

* |Inductive rule: If “many F have been found to be G” and “until now, no F have
been found not to be G”, then “the next F will be G”.

* |nductive reasoning is a process of change in view.

e \WWhen can an inductive rule be considered reliable?



Vapnik and Chervonenkis (VC) Dimension

 The VC dimension of a set of rules C is the maximum number N of data points
that can be arranged so that, for every one of the 2N ways of assigning values
to each of those points, there is a rule in C that is in accord with that
assignment.

https://en.wikipedia.org/wiki/Shattered set
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Vapnik and Chervonenkis (VC) Dimension

 The VC dimension of a set of rules C is the maximum number N of data points
that can be arranged so that, for every one of the 2N ways of assigning values to
each of those points, there is a rule in C that is in accord with that assignment.

* Relationship with Karl Popper’s methodology: evidence cannot establish a
scientific hypothesis, it can only falsify it.

 For finite VC dimension V, there is a function m(V, €, 0) that indicates the

maximum amount of data needed to ensure that the probability is less than o
that enumerative induction (or, empirical risk minimization) will endorse a
hypothesis with an expected error rate that exceeds the minimum expected

error rate for rules in C by more than €.



Limitation of Models with Finite VC Dimension

* Linear models in a D-dimensional feature space have VC dimension D+1.
 Even with enough data, the best linear rule can have a high expected error.
 We can use a richer class of rules.

* With a finite VC dimension, no guarantee for the expected error of the best
rule in C to be close to the expected error of the overall best rule (i.e., the
Bayes rule).
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“Golden Rule of Predictive Modeling”

 Based on the same evidence, the predictions of (very simple) statistical models
are typically more reliable than the predictions of human experts.

* This Is true for proper linear models with the weights learned to best fit data.

* Also true for improper linear models based on bootstrapping (i.e., proper linear
models of an expert’s judgments)...!

e Also true for random linear models (where the variables are defined to be
positively correlated with the target)...?!

* Possible explanations: Flat maximum principle (Einhorn and Hogarth, 1975)
and the nature of human decisions.



The “Broken Leg” Problem

* A formula successful at predicting an individual’s weekly attendance to a
movie should be discarded upon discovering that the subject just had a

broken leg.
 However, most often we observe a failure of human defection strategy.

* Only for statistical models for which we have a theoretical explanation of their
success, a human expert can apply her additional theoretical knowledge, and
defecting from the model can be successful.

* |n that case, the decision is often based on additional cues currently unknown
to the statistical model.



Universal Consistency

A method is universally consistent when, for any background distribution, as

more data are obtained, the expected error of the learned model approaches
the expected error of the best rule.

 When the VC dimension is infinite, no method can guarantee a rate of
convergence.

 For example, with n the amount of data, a ﬁ—nearest—neighbors model Is
universally consistent.



Inductive Bias and Structural Risk Minimization

e A kind of universally consistent method with a trade-off between empirical adequacy
to available data and another factor, the “simplicity”.

» ForaclassofrulesC=C,UC,U...UC U...whereC,C(,C...C(C, C...,

SRM is to minimize a function of both the empirical error of the rule on the data and
the VC dimension of the smallest class containing the rule.

* Cross-validation is another way to mitigate overfitting.

e “Simplicity” is hard to define. For example, measuring it by the number of
parameters (as Popper did) is not satistying. Take for example, the class of sine

curves y = a sin(bx). Is it simple because it has two parameters?
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“Reliable Reasoning”, Figure 3.3 p. 72



Universal Approximation For Neural Network
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Figure 4.3
A feed-forward network.



Figure 4.4
Approximating a convex hypervolume.




Figure 4.5
Intersecting half-spaces.



Figure 4.6

Taking a union of intersections.
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Interpretability, a domain-specific notion

» Constraints in model form: monotonicity, giving preference to variables
identified by domain experts...

o Sparsity: in particular for structured data, it allows for understanding how a
handful of variables interact jointly.

* |ncorporating application-specific constraints can lead to computationally
hard problems.

 Making interpretable models requires specific skills for the data scientists.



Black-box models

 An metamodel “explanation” is an understanding of how the model works and not necessarily an
explanation of how the world works.

A metamodel can show trends in how predictions are related to the features.
* |t can be inaccurate in parts of the feature space.

|t can reproduce accurately the predictions of the original model but using completely different
features.

* |t can be difficult to fine-tune the importance given to contextual information.
* The sensibility to “noise” of black box models can be difficult to assess.
* There can be an incentive to monetize a black box model.

* Counterfactual explanations may not be sufficient.



Trade-off between accuracy and interpretability
A myth?

* For problems with structured data and meaningful features, there is often no
difference in performance between more complex classifiers and simpler
ones, after preprocessing.

* The standard process for knowledge discovery (KDD, CRISP-DM...) is more
essential than the differences between algorithms.

* Uninterpretable methods can provide baseline levels of performance.



Algorithmic challenges in interpretable ML

* Falling Rule Lists, with Bayesian learning.
* Optimized risk scores, with Integer Linear Program (ILP) solvers.

* Generalised Additive models (GAM).

 Symbolic regression, with genetic programming, simulated annealing or even
gradient descent given a recent parametrization.

* |Interpretable deep-learning for case-based reasoning with prototypes.

e Etc.
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ML as an engineering discipline

* Data scientists cannot debug their models if they do not understand their
behavior.

* |nteractive ML (IML), a new challenge in Human Computer Interaction (HCI).

 How to evaluate interpretable or explainable models? Very few user studies.



Common issues faced by Data Scientists

As captured by conducting pilot interviews

 Missing values

 Changes in data over time (e.g., new categories for an existing feature)
 Duplicate data

 Redundant features

* Ad-hoc categorization of continuous features.

* Debugging difficulties. Ildentifying potential model improvements based on a
small number of data points is difficult.



Contextual inquiry

11 participants

e “Adult” dataset, 1994 US census data, a data point is a person, the features are her age,

education, marital status, native country, occupation, etc. The label is binary: income
>$50k.

» 2 interpretability tools: GAM or the SHAP Python package.
 Each participant used only one tool selected at random.

 Dataset modified to evaluate how the common issues faced by data scientists are
managed in practice.

* Conslusion: useful (e.qg., for identifying missing values) but over-trust and misuse. No deep
understanding of the visualizations. A bias toward model deployment.



Overall Importance: Mean Absolute Score Age Predicted 0.00 | Actual 0.00

MaritalStatus " Intercept
Age " 2 MaritalStatus (Never-married)
CapitalGain e Occupation (Other-service)

()]
8 n
Occupation g0 Age (54.00)
EducationNum I 2 EducationNum (13.00)
20 30 40 70 80 90

Education (Bachelors)

Education _
50 60 CapitalGain (0.00)
HoursPerWeek N
Canitall Gender (Female)
pitalLoss [N HoursPerWeek (30-60)
WorkClass [N . CapitalLoss (0.00)
Race I £ *_; WorkClass (Private)
c N NN W W WSELLBDULULUNUOODOOD N NN © .
ool — § CEEGLEEIREEEBERISEILLE WO )L
NativeCountry I RSt 4t i a st e di NativeCountry (United-States)
AL EEEEE TR R E R EEERERE Y
0 0.2 0.4 0.6 0.8 1 12 Nobhmnomnomrin®erduoduowaoo -2 -1 0 1 2
i 0.61 Widowed
MaritalStatus [N ' :
N | T T T T Tgher = lower ¥
) Ag'e Separated I " gc?ftput vallu?baese value |
CapltaIGaln _ 04- l)o9009 0.1401 0.1901 0.21  0.2401 0.2901 0.3401 0.3901 0.4401 0.4901
EducationNum D N ied )))___-l
OccupatiOn _ 8 ever-marri g ' MaritalStatus = Married-civ-spouse Occupahon=Machme-op-mspdl Age =36 EducationNum =10 CapitalGain=0 ' Capitail
: = 02 E m—mmmmmmrm————— !
Q
CapitalLoss [N = Married-spouse-absent 2 I—
HoursPerWeek Il S2@ € |
WorkClass 1l < 0.0 - Married-civ-spous g
Gender Il 5 ed-clvapouse higher =— lower
Race M . output valudase value
Education B 02 Married-AF-spouse 0.09009 0.1401 0.1901 0.21  0.2401 0.2901
NativeCountry [I ) (|
i ' ' ' ' ' ' Divorced '
0.00 0.02 0.04 0.06 0.08 0.10 0.12 20 30 40 50 60 70 80 90 MaritalStatus = Married-civ-spouse Occupation = Machine-op-inspct

mean(|SHAP value|) (average impact on model output magnitude) Age

Figure 1: Visualizations output by the InterpretML implementation of GAMs (top) and the SHAP Python package (bottom). Left
column: global explanations. Middle column: component (GAMs) or dependence plot (SHAP). Right column: local explanations.
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