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Reliable Reasoning and the 
Interpretability of ML Models





Deductive Logic and Induction

• Deductive rule: If “all F are G” then “the next F will be G”


• Reliable: It never leads from true premises to a false conclusion.


• Inductive rule: If “many F have been found to be G” and “until now, no F have 
been found not to be G”, then “the next F will be G”.


• Inductive reasoning is a process of change in view.


• When can an inductive rule be considered reliable?



Vapnik and Chervonenkis (VC) Dimension

• The VC dimension of a set of rules C is the maximum number N of data points 
that can be arranged so that, for every one of the 2N ways of assigning values 
to each of those points, there is a rule in C that is in accord with that 
assignment.

https://en.wikipedia.org/wiki/Shattered_set

https://en.wikipedia.org/wiki/Shattered_set


Vapnik and Chervonenkis (VC) Dimension

• The VC dimension of a set of rules C is the maximum number N of data points 
that can be arranged so that, for every one of the 2N ways of assigning values to 
each of those points, there is a rule in C that is in accord with that assignment.


• Relationship with Karl Popper’s methodology: evidence cannot establish a 
scientific hypothesis, it can only falsify it.


• For finite VC dimension V, there is a function  that indicates the 
maximum amount of data needed to ensure that the probability is less than  
that enumerative induction (or, empirical risk minimization) will endorse a 
hypothesis with an expected error rate that exceeds the minimum expected 
error rate for rules in C by more than .

m(V, ϵ, δ)
δ

ϵ



Limitation of Models with Finite VC Dimension

• Linear models in a D-dimensional feature space have VC dimension D+1.


• Even with enough data, the best linear rule can have a high expected error.


• We can use a richer class of rules.


• With a finite VC dimension, no guarantee for the expected error of the best 
rule in C to be close to the expected error of the overall best rule (i.e., the 
Bayes rule).





“Golden Rule of Predictive Modeling”

• Based on the same evidence, the predictions of (very simple) statistical models 
are typically more reliable than the predictions of human experts.


• This is true for proper linear models with the weights learned to best fit data.


• Also true for improper linear models based on bootstrapping (i.e., proper linear 
models of an expert’s judgments)...!


• Also true for random linear models (where the variables are defined to be 
positively correlated with the target)...?!


• Possible explanations: Flat maximum principle (Einhorn and Hogarth, 1975) 
and the nature of human decisions.



The “Broken Leg” Problem

• A formula successful at predicting an individual’s weekly attendance to a 
movie should be discarded upon discovering that the subject just had a 
broken leg.


• However, most often we observe a failure of human defection strategy.


• Only for statistical models for which we have a theoretical explanation of their 
success, a human expert can apply her additional theoretical knowledge, and 
defecting from the model can be successful.


• In that case, the decision is often based on additional cues currently unknown 
to the statistical model.



Universal Consistency

• A method is universally consistent when, for any background distribution, as 
more data are obtained, the expected error of the learned model approaches 
the expected error of the best rule.


• When the VC dimension is infinite, no method can guarantee a rate of 
convergence.


• For example, with  the amount of data, a  model is 
universally consistent.

n n-nearest-neighbors



Inductive Bias and Structural Risk Minimization

• A kind of universally consistent method with a trade-off between empirical adequacy 
to available data and another factor, the “simplicity”.


• For a class of rules  where , 
SRM is to minimize a function of both the empirical error of the rule on the data and 
the VC dimension of the smallest class containing the rule.


• Cross-validation is another way to mitigate overfitting.


• “Simplicity” is hard to define. For example, measuring it by the number of 
parameters (as Popper did) is not satisfying. Take for example, the class of sine 
curves . Is it simple because it has two parameters?

C = C1 ∪ C2 ∪ … ∪ Cn ∪ … C1 ⊂ C2 ⊂ … ⊂ Cn ⊂ …

y = a sin(bx)



“Reliable Reasoning”, Figure 3.3 p. 72



Universal Approximation For Neural Network











Interpretability, a domain-specific notion

• Constraints in model form: monotonicity, giving preference to variables 
identified by domain experts...


• Sparsity: in particular for structured data, it allows for understanding how a 
handful of variables interact jointly.


• Incorporating application-specific constraints can lead to computationally 
hard problems.


• Making interpretable models requires specific skills for the data scientists.



Black-box models

• An metamodel “explanation” is an understanding of how the model works and not necessarily an 
explanation of how the world works.


• A metamodel can show trends in how predictions are related to the features.


• It can be inaccurate in parts of the feature space.


• It can reproduce accurately the predictions of the original model but using completely different 
features.


• It can be difficult to fine-tune the importance given to contextual information.


• The sensibility to “noise” of black box models can be difficult to assess.


• There can be an incentive to monetize a black box model.


• Counterfactual explanations may not be sufficient.



Trade-off between accuracy and interpretability
A myth?

• For problems with structured data and meaningful features, there is often no 
difference in performance between more complex classifiers and simpler 
ones, after preprocessing.


• The standard process for knowledge discovery (KDD, CRISP-DM...) is more 
essential than the differences between algorithms.


• Uninterpretable methods can provide baseline levels of performance.



Algorithmic challenges in interpretable ML

• Falling Rule Lists, with Bayesian learning.


• Optimized risk scores, with Integer Linear Program (ILP) solvers.


• Generalised Additive models (GAM).


• Symbolic regression, with genetic programming, simulated annealing or even 
gradient descent given a recent parametrization.


• Interpretable deep-learning for case-based reasoning with prototypes.


• Etc.







ML as an engineering discipline

• Data scientists cannot debug their models if they do not understand their 
behavior.


• Interactive ML (iML), a new challenge in Human Computer Interaction (HCI).


• How to evaluate interpretable or explainable models? Very few user studies.



Common issues faced by Data Scientists
As captured by conducting pilot interviews

• Missing values


• Changes in data over time (e.g., new categories for an existing feature)


• Duplicate data


• Redundant features


• Ad-hoc categorization of continuous features.


• Debugging difficulties. Identifying potential model improvements based on a 
small number of data points is difficult.



Contextual inquiry

• 11 participants


• “Adult” dataset, 1994 US census data, a data point is a person, the features are her age, 
education, marital status, native country, occupation, etc. The label is binary: income 
>$50k.


• 2 interpretability tools: GAM or the SHAP Python package.


• Each participant used only one tool selected at random.


• Dataset modified to evaluate how the common issues faced by data scientists are 
managed in practice.


• Conslusion: useful (e.g., for identifying missing values) but over-trust and misuse. No deep 
understanding of the visualizations. A bias toward model deployment.





Thank you!


