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MAP REPRESENTATIONS

Features vs Metric




FEATURE MAPS

« Compact representation
« Memory efficient
* Needs a very good feature detector

« Must deal with data-association problems



« Discretize the world into cells

« Each cell is either occupied or free space
+ Non-parametric model

- Doesn't rely on detecting features

+ Requires substantial memory resources



GRID MAP ASSUMPTION 1

« A cell is completely free or occupied

occupied < free
space space




OCCUPANCY PROBABILISTIC REPRESENTATION

« Each cell is associated as binary random variable

« The probability shows the belief of the cell being
occupied or free

p(m;) — 1 «——p(m;) =0




GRID MAP ASSUMPTION 2

« The world is static

always occupied

always free space




GRID MAP ASSUMPTION 3

« The binary random variables are independent

no dependency
between the cells




OCCUPANCY MAP REPRESENTATION

« The probability distribution of the map is given by the
product of the probability over the cells

p(m) = Hp(mz-)
T T

map cell



ESTIMATING A MAP FROM DATA

« Estimating the map given the sensor data z,.; and the
poses X, translates to:

p(m | Zl:t;xlzt) = Hp(mi | Zl:twrlzt)
i

T

binary random variable



LEAST SQUARES OVERVIEW

 Generic approach to many optimization related
problems (including ML)

« Computes solutions for over-determined systems
+ More equation than unknowns
+ Seeks to minimize the sum of squared errors

« Deeply related to Linear Regression in ML
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LEAST SQUARES PROBLEM SETUP

+ Given an system described by a set of n observation
functions {fi(X)i—v.n}

e Let:
- X be the state vector

« Z; be a measurement of the state X

Z; = f,(X) be a function that maps X to a measurement Z;
« Given: n noisy measurements Z,., about the state X

+ Goal: estimate state X which best explain the
measurements Z,.,
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LEAST SQUARES ERROR FUNCTION

- Error e; is usually the difference between the predicted
and the actual measurement

ei(x) =z — 2 = z; — fi(x)

« We assume the error is normally distributed with zero
mean

« Gaussian error has the information matrix Q;

« Squared error of a measurement depends only on the
state and is a scalar
e;(x) = e,-(x)T Q; e,~(x)
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LEAST SQUARES GOAL

« Finding the x* entails minimizing the error given all
measurements

X" = argmin F(X)
X

= [ ei(x
argmin Z i(x)
= argmm Ze X) Q; ej(x
« Usual approach is to find the derivative nulls (zeros).

« Complex and no closed form solution
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LEAST SQUARES NUMERICAL SOLUTION ASSUMPTIONS

« We can construct a good initial guess

« Error functions are smooth in the neighborhood of the
(global) minima

 So, we can iteratively solve the problem by computing
local liniarizations at each step
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LEAST SQUARES NUMERICAL SOLUTION STEPS

« Liniarize the error terms around the current solution
(the starting point is our initial guess)

« Compute the first order derivative of the error function

« Set it to zero and solve the linear system (to obtain a
better solution)

« Iterate until convergence
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ERROR FUNCTION LINEARIZATION

« Linearizing via Taylor series expansion gives:
e;(X + Ax) ~ e;(x) + J;(x)Ax
« where the Jacobian is given by:

OR0 () R0

OX4 X,  OXy
If(x)  Ofx(x) Ifa(X)
OX4 X, X

)=

Ifa(X)  Ofa(X) Ifa(X)
s)e o,  Oxp
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SQUARED ERROR MINIMIZATION

« We can fix x and do the minimization in increments Ax
 Replacing the Taylor expansion in the squared error
terms yields:
e;(x + Ax) = e/ (x + Ax) Q; e;(x + AXx)
~ (e + )ibx)" Q; (e; + JiBx)
e 0 e+
=e 0 )Ax + AX" ) eQ; +
AX" )] Q;); Bx
+ Manipulating the equation result in Ax* = —H'b with
H= Z]TQ Jiand b” = ZeTQ )i
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« Liniarize around x and compute for each measurement:
€;(x + Ax) ~ e;(x) + J;(x)Ax
« Compute linear system terms H = Z],T Q; J; and
bT =>"el Q)i |
,
+ Solve the linear system Ax* = —H™'b
+ Update state x = x + Ax*

« Iterate until convergence
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GRAPH SLAM - MOTION

« Constraints connect successive poses while the robot is
moving

« Constraints are inherently uncertain

."A E ‘(

P Robot pose «=«p Constraint

V‘_">.....>~
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GRAPH SLAM - OBSERVATION

 Observing previous location generates constraints
between non-successive poses

3 Y
A
-~

P> Robot pose -««» Constraint
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GRAPH SLAM IDEA

» Represent the SLAM problem as a graph

« Every node corresponds to a pose at which we took a
measurement

- Every edge (between two nodes) represents a spatial
constraint

« Graph SLAM entails building the graph an then
minimizing the error introduced by the constraints
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+ Interplay between a front-end and a back-end
« Front-end successively builds the graph

« Back-end successively optimizes the graph

node positions
¥ 1

Graph Graph

date C;nSt;”;tisn m— Ogtin:z;ti;n
ront-En ack-En
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+ Consists of n nodes x;.,
« Each x; is the pose of a robot at time t;

+ A constraint/edge exists between nodes x; and x; if ...

: Y
A
-~

P Robot pose -««» Constraint 2



ROBOT MOVEMENT CONSTRAINTS

« ..the robot moves from x; to x; + 1

« Edge corresponds to the odometry measurement

O—@
X \ Xi4+1

The edge represents the
odometry measurement
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ROBOT OBSERVATION CONSTRAINTS

« ..the robot observes the same part of the environment
from x; and from x;

Measurement fromx; Measurement from x;
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ROBOT OBSERVATION CONSTRAINTS

« ..the robot observes the same part of the environment
from x; and from x;

« Construct a virtual measurement about the position of x;
seen from x;

Edge represents the position of X;seen
fromx; based on the observation
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observation (2ij,Qi;) —— edge
of X;fromX; .

e;j(xi,%;5)

j
nodes

according to
the graph

error
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OPTIMIZE VIA LEAST SQUARES

« Error looks according to the least squares formulation

X" = argmin E eE(x,,x,-)Qijei,-(X;,xj)
X -
I

= i el (x)Qrer(x
arg;n'nzk: k(X)2rer(X)

« We now have a way to recover the correct poses

« Then mapping with known poses becomes a very easy
task
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SUMMARY

« Occupancy grid maps discretize the space into
independent cells

« Each cell is a binary random variable estimating if the
cell is occupied

+ Least Squares: technique to minimize squared error
» We can represent the SLAM problem as a graph

« Back-end can be effectively implemented via least
squares

+ More information in [1, 2]
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