Robot Autonomy

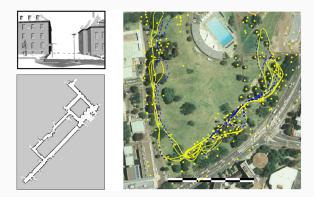
Graph SLAM - A Least Squares Approach

Dan M. Novischi

dan_marius.novischi@upb.ro

University POLITEHNICA of Bucharest Faculty of Automatic Control And Computers

Features vs Metric



FEATURE MAPS

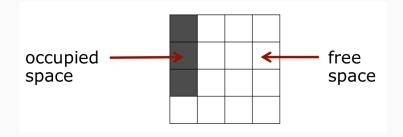
- Compact representation
- Memory efficient
- Needs a very good feature detector
- Must deal with data-association problems

GRID MAPS

- Discretize the world into cells
- Each cell is either occupied or free space
- Non-parametric model
- Doesn't rely on detecting features
- Requires substantial memory resources

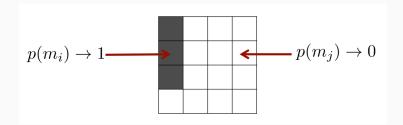
GRID MAP ASSUMPTION 1

• A cell is completely free or occupied



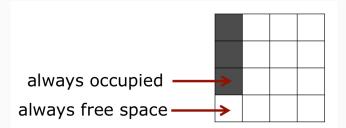
OCCUPANCY PROBABILISTIC REPRESENTATION

- Each cell is associated as binary random variable
- The probability shows the belief of the cell being occupied or free



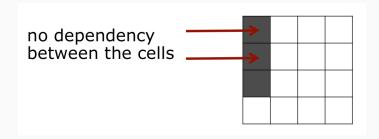
GRID MAP ASSUMPTION 2

• The world is static



GRID MAP ASSUMPTION 3

• The binary random variables are independent



OCCUPANCY MAP REPRESENTATION

• The probability distribution of the map is given by the product of the probability over the cells

$$p(m) = \prod_{i} p(m_i)$$

map cell

ESTIMATING A MAP FROM DATA

 Estimating the map given the sensor data z_{1:t} and the poses x_{1:t} translates to:

$$p(m \mid z_{1:t}, x_{1:t}) = \prod_{i} p(m_i \mid z_{1:t}, x_{1:t})$$

binary random variable

LEAST SQUARES OVERVIEW

- Generic approach to many optimization related problems (including ML)
- · Computes solutions for over-determined systems
- More equation than unknowns
- Seeks to minimize the sum of squared errors
- Deeply related to Linear Regression in ML

LEAST SQUARES PROBLEM SETUP

- Given an system described by a set of n observation functions {f_i(x)_{i=1:n}}
- Let:
 - X be the state vector
 - **Z**_i be a measurement of the state **X**
 - $\mathbf{\hat{z}}_i = f_i(\mathbf{X})$ be a function that maps **X** to a measurement $\mathbf{\hat{z}}_i$
- Given: *n* noisy measurements **Z**_{1:*n*} about the state **X**
- Goal: estimate state X which best explain the measurements Z_{1:n}

LEAST SQUARES ERROR FUNCTION

 Error e_i is usually the difference between the predicted and the actual measurement

$$\mathbf{e}_i(x) = \mathbf{z}_i - \mathbf{\hat{z}}_i = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume the error is normally distributed with zero mean
- Gaussian error has the information matrix **Ω**_i
- Squared error of a measurement depends only on the state and is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^{\mathsf{T}} \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

LEAST SQUARES GOAL

• Finding the x* entails minimizing the error given all measurements

$$\begin{aligned} \mathbf{x}^* &= \operatorname*{argmin}_{x} F(\mathbf{x}) \\ &= \operatorname*{argmin}_{x} \sum_{i} e_i(\mathbf{x}) \\ &= \operatorname*{argmin}_{x} \sum_{i} \mathbf{e}_i^T(\mathbf{x}) \ \mathbf{\Omega}_i \ \mathbf{e}_i(\mathbf{x}) \end{aligned}$$

- Usual approach is to find the derivative nulls (zeros).
- Complex and no closed form solution

LEAST SQUARES NUMERICAL SOLUTION ASSUMPTIONS

- We can construct a good initial guess
- Error functions are smooth in the neighborhood of the (global) minima
- So, we can iteratively solve the problem by computing local liniarizations at each step

LEAST SQUARES NUMERICAL SOLUTION STEPS

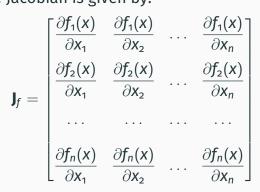
- Liniarize the error terms around the current solution (the starting point is our initial guess)
- Compute the first order derivative of the error function
- Set it to zero and solve the linear system (to obtain a better solution)
- Iterate until convergence

ERROR FUNCTION LINEARIZATION

• Linearizing via Taylor series expansion gives:

 $\mathbf{e}_i(\mathbf{x} + \mathbf{\Delta}\mathbf{x}) \simeq \mathbf{e}_i(\mathbf{x}) + \mathbf{J}_i(\mathbf{x})\mathbf{\Delta}\mathbf{x}$

• where the Jacobian is given by:



SQUARED ERROR MINIMIZATION

- We can fix \boldsymbol{x} and do the minimization in increments $\boldsymbol{\Delta x}$
- Replacing the Taylor expansion in the squared error terms yields:

$$\begin{aligned} \mathbf{e}_i(\mathbf{x} + \mathbf{\Delta}\mathbf{x}) &= \mathbf{e}_i^T(\mathbf{x} + \mathbf{\Delta}\mathbf{x}) \ \mathbf{\Omega}_i \ \mathbf{e}_i(\mathbf{x} + \mathbf{\Delta}\mathbf{x}) \\ &\simeq (\mathbf{e}_i + \mathbf{J}_i \mathbf{\Delta}\mathbf{x})^T \ \mathbf{\Omega}_i \ (\mathbf{e}_i + \mathbf{J}_i \mathbf{\Delta}\mathbf{x}) \\ &\mathbf{e}_i^T \ \mathbf{\Omega}_i \ \mathbf{e}_i + \\ &= \mathbf{e}_i^T \ \mathbf{\Omega}_i \ \mathbf{J}_i \mathbf{\Delta}\mathbf{x} + \mathbf{\Delta}\mathbf{x}^T \ \mathbf{J}_i^T \ \mathbf{e} \ \mathbf{\Omega}_i + \\ &\mathbf{\Delta}\mathbf{x}^T \ \mathbf{J}_i^T \ \mathbf{\Omega}_i \ \mathbf{J}_i \ \mathbf{\Delta}\mathbf{x} \end{aligned}$$

• Manipulating the equation result in $\Delta x^* = -H^{-1}b$ with $H = \sum_i \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{J}_i$ and $b^T = \sum_i \mathbf{e}_i^T \mathbf{\Omega}_i \mathbf{J}_i$

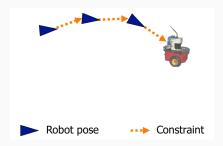
• Liniarize around x and compute for each measurement:

$$\mathbf{e}_i(\mathbf{x} + \mathbf{\Delta}\mathbf{x}) \simeq \mathbf{e}_i(\mathbf{x}) + \mathbf{J}_i(\mathbf{x})\mathbf{\Delta}\mathbf{x}$$

- Compute linear system terms $H = \sum_{i} \mathbf{J}_{i}^{T} \mathbf{\Omega}_{i} \mathbf{J}_{i}$ and $b^{T} = \sum_{i} \mathbf{e}_{i}^{T} \mathbf{\Omega}_{i} \mathbf{J}_{i}$
- Solve the linear system $\Delta x^* = -H^{-1}b$
- Update state $x = x + \Delta x^*$
- Iterate until convergence

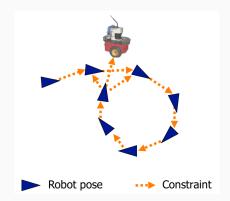
GRAPH SLAM - MOTION

- Constraints connect successive poses while the robot is moving
- Constraints are inherently uncertain



GRAPH SLAM - OBSERVATION

• Observing previous location generates constraints between non-successive poses

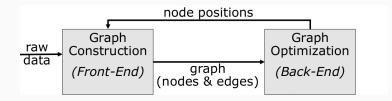


GRAPH SLAM IDEA

- Represent the SLAM problem as a graph
- Every node corresponds to a pose at which we took a measurement
- Every edge (between two nodes) represents a spatial constraint
- Graph SLAM entails building the graph an then minimizing the error introduced by the constraints

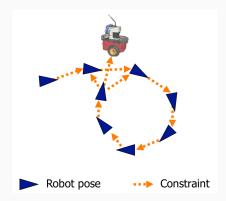
THE OVERALL SYSTEM

- Interplay between a front-end and a back-end
- Front-end successively builds the graph
- Back-end successively optimizes the graph



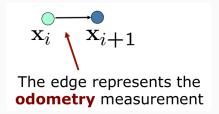
THE GRAPH

- Consists of *n* nodes *x*_{1:*n*}
- Each x_i is the pose of a robot at time t_i
- A constraint/edge exists between nodes x_i and x_j if ...



ROBOT MOVEMENT CONSTRAINTS

- ...the robot moves from x_i to $x_i + 1$
- Edge corresponds to the odometry measurement



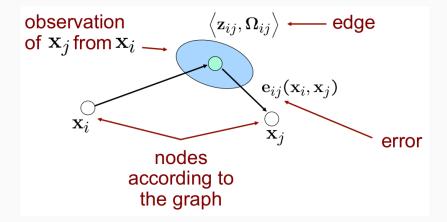
 ...the robot observes the same part of the environment from x_i and from x_j

ROBOT OBSERVATION CONSTRAINTS

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a virtual measurement about the position of x_j seen from x_i

Edge represents the position of x_j seen from x_i based on the **observation**

THE POSE GRAPH



• Error looks according to the least squares formulation

$$egin{aligned} & x^* = \operatorname*{argmin}_{x} \sum_{ij} e^{\mathsf{T}}_{ij}(x_i, x_j) \Omega_{ij} e_{ij}(x_i, x_j) \ & = \operatorname*{argmin}_{x} \sum_{k} e^{\mathsf{T}}_{k}(x) \Omega_k e_k(x) \end{aligned}$$

- We now have a way to recover the correct poses
- Then mapping with known poses becomes a very easy task

- Occupancy grid maps discretize the space into independent cells
- Each cell is a binary random variable estimating if the cell is occupied
- Least Squares: technique to minimize squared error
- We can represent the SLAM problem as a graph
- Back-end can be effectively implemented via least squares
- More information in [1, 2]

REFERENCES I

G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard.

A tutorial on graph-based slam.

IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

🔋 S. Thrun.

Probabilistic robotics.

Communications of the ACM, 45(3):52–57, 2002.