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Map Representations

Features vs Metric
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Feature Maps

• Compact representation

• Memory efficient

• Needs a very good feature detector

• Must deal with data-association problems
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Grid Maps

• Discretize the world into cells

• Each cell is either occupied or free space

• Non-parametric model

• Doesn’t rely on detecting features

• Requires substantial memory resources
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Grid Map Assumption 1

• A cell is completely free or occupied
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Occupancy Probabilistic Representation

• Each cell is associated as binary random variable

• The probability shows the belief of the cell being
occupied or free

5



Grid Map Assumption 2

• The world is static
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Grid Map Assumption 3

• The binary random variables are independent
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Occupancy Map Representation

• The probability distribution of the map is given by the
product of the probability over the cells
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Estimating a Map from Data

• Estimating the map given the sensor data z1:t and the
poses x1:t translates to:
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Least Squares Overview

• Generic approach to many optimization related
problems (including ML)

• Computes solutions for over-determined systems

• More equation than unknowns

• Seeks to minimize the sum of squared errors

• Deeply related to Linear Regression in ML
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Least Squares Problem Setup

• Given an system described by a set of n observation
functions {fi(x)i=1:n}

• Let:
• X be the state vector

• Zi be a measurement of the state X

• Ẑi = fi(X) be a function that maps X to a measurement Ẑi

• Given: n noisy measurements Z1:n about the state X

• Goal: estimate state X which best explain the
measurements Z1:n
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Least Squares Error Function

• Error ei is usually the difference between the predicted
and the actual measurement

ei(x) = zi − ẑi = zi − fi(x)

• We assume the error is normally distributed with zero
mean

• Gaussian error has the information matrix Ωi

• Squared error of a measurement depends only on the
state and is a scalar

ei(x) = ei(x)T Ωi ei(x)
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Least Squares Goal

• Finding the x∗ entails minimizing the error given all
measurements

x∗ = argmin
x

F(x)

= argmin
x

∑
i

ei(x)

= argmin
x

∑
i

eTi (x) Ωi ei(x)

• Usual approach is to find the derivative nulls (zeros).

• Complex and no closed form solution
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Least Squares Numerical Solution Assumptions

• We can construct a good initial guess

• Error functions are smooth in the neighborhood of the
(global) minima

• So, we can iteratively solve the problem by computing
local liniarizations at each step
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Least Squares Numerical Solution Steps

• Liniarize the error terms around the current solution
(the starting point is our initial guess)

• Compute the first order derivative of the error function

• Set it to zero and solve the linear system (to obtain a
better solution)

• Iterate until convergence
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Error Function Linearization

• Linearizing via Taylor series expansion gives:

ei(x + ∆x) ≃ ei(x) + Ji(x)∆x

• where the Jacobian is given by:

Jf =


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∂x2

. . .
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∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2
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∂fn(x)
∂x1
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∂fn(x)
∂xn


16



Squared Error Minimization

• We can fix x and do the minimization in increments ∆x

• Replacing the Taylor expansion in the squared error
terms yields:

ei(x + ∆x) = eTi (x + ∆x) Ωi ei(x + ∆x)
≃ (ei + Ji∆x)T Ωi (ei + Ji∆x)

=

eTi Ωi ei +
eTi Ωi Ji∆x + ∆xT JTi e Ωi +

∆xT JTi Ωi Ji ∆x
• Manipulating the equation result in ∆x∗ = −H−1b with
H =

∑
i

JTi Ωi Ji and bT =
∑
i

eTi Ωi Ji
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Long Story Short

• Liniarize around x and compute for each measurement:

ei(x + ∆x) ≃ ei(x) + Ji(x)∆x

• Compute linear system terms H =
∑
i

JTi Ωi Ji and

bT =
∑
i

eTi Ωi Ji

• Solve the linear system ∆x∗ = −H−1b

• Update state x = x +∆x∗

• Iterate until convergence
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Graph SLAM - Motion

• Constraints connect successive poses while the robot is
moving

• Constraints are inherently uncertain
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Graph SLAM - Observation

• Observing previous location generates constraints
between non-successive poses
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Graph SLAM Idea

• Represent the SLAM problem as a graph

• Every node corresponds to a pose at which we took a
measurement

• Every edge (between two nodes) represents a spatial
constraint

• Graph SLAM entails building the graph an then
minimizing the error introduced by the constraints
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The Overall System

• Interplay between a front-end and a back-end

• Front-end successively builds the graph

• Back-end successively optimizes the graph
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The Graph

• Consists of n nodes x1:n

• Each xi is the pose of a robot at time ti
• A constraint/edge exists between nodes xi and xj if ...
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Robot movement constraints

• ...the robot moves from xi to xi + 1

• Edge corresponds to the odometry measurement
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Robot observation Constraints

• ...the robot observes the same part of the environment
from xi and from xj
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Robot Observation Constraints

• ...the robot observes the same part of the environment
from xi and from xj

• Construct a virtual measurement about the position of xj
seen from xi
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The Pose Graph
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Optimize via Least Squares

• Error looks according to the least squares formulation

x∗ = argmin
x

∑
ij

eTij(xi, xj)Ωijeij(xi, xj)

= argmin
x

∑
k

eTk(x)Ωkek(x)

• We now have a way to recover the correct poses

• Then mapping with known poses becomes a very easy
task
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Summary

• Occupancy grid maps discretize the space into
independent cells

• Each cell is a binary random variable estimating if the
cell is occupied

• Least Squares: technique to minimize squared error

• We can represent the SLAM problem as a graph

• Back-end can be effectively implemented via least
squares

• More information in [1, 2]
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